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We introduce a new family P"P of spline minimization problems for vector fields,
defined by

{

Min (a f IIV'div
p •. P R'

VE.r and V(X",)

dx dy + fJ J" iiV'rot Vii 2 dx dY )
122

Vi' i=l, ...,N,

where V= (u, c) is a two component vector function, .f is the Beppo Levi space
D 'l.'(iR')x D 'L'(~'), X i = (Xi' Y,) are the interpolation puints. ant! V, ._" (IIi' 1',)
8re data values. A coupling between Ii components is achieved by the divergence
(div) and rotational (rot) operators. a, fJ arc fixed real positive constants controlling:
the relative weight on the gradient of the divergence and rot"tional fields. The
explicit c'ontrol on divergence and rotational operators is well suited for geophysical
nuid now interpolations; it allows us to cope with the great differences frequently
ohserved in the magnitudes of the divergent and rotatiunal parls ur the now.
Through the general spline formalism, existence and uniqueness of the solution is
proved. The analytical solution is explicitly calculated and numerical examples are
presented. For a (and 11) - 0, "limit" problems arc defined and their analytical
solutions arc given. (1991 Academic Press. Inc.

1. INTRODUCTIO:'-;

In meteorology, interpolation methods are essential for the restitution of
physical fields from observed data. generally irregularly located in space
and time. The fields, produced by meteorological analysis, are used as
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initial value fields for numerical weather prediction models and for
diagnostic purposes.

In horizontal wind field analysis, derived divergence (div V = axU +<\V)

and vorticity (also called rotational; rot V = ax v - ayu) fields are of prime
importance. For example, the horizontal divergence field allows the
diagnosis of vertical velocity (not measured by operational meteorological
observing systems); also, potential-kinetic energy conversion is controlled
by the divergence field.

In this context, vector field interpolation introduces some specific
problems. The simplest approach is to treat the two components separately.
The result, as pointed out by many authors (cf. Daley [4,5], Pedder
[15]), shows that the lack of intercomponent correlation often generates
unrealistic fluctuations in the derived divergence and rotational fields. This
observation suggests the use of a smoothing operator applied on these
fields; in this way, V components are intrinsically linked. Moreover, an a
prioric scale analysis of the equations of motion reveals that the divergence
and rotational fields are generally not of the same order of magnitude: for
example, in synoptic midlatitude processes, we have Idiv VI/I rot VI ~
Ro ~ 0.1 (Ro is the Rossby number, Ro = U/jL; U is the velocity scale,
U ~ 10 m/s;f is the Coriolis parameter,j~ 10- 4

S-I; L is the length scale,
L ~ 106m; cf. Raltiner and Williams [11], Chap. 3). In fact, a divergence­
rotational control is intended to fit this information.

At present, statistical regression methods (i.e., minimum variance linear
estimates, called optimal interpolation: cf. Eliassen [9], Gandin [10],
Daley [4, 5]) are currently used in meteorological analysis. For wind inter­
polations, multivariate formulations are used, in which intercomponent
correlations are explicitly considered; the control on divergence-rotational
fields is achieved by a statistical hypothesis on the correlation functions
modelling the velocity potential X and the stream function ljJ associated to
V (V = Vx + Rot ljJ; cf. Section 7.2).

The solution we present here is formulated in the variational spline for­
malism and extends, in some aspects, the thin-plate spline introduced by
Duchon (cf. [8]). It gives a spline functional equivalence to the statistical
approach. A similar approach to vector interpolation, showing an
intercomponent coupling, has recently been formulated by Atteia and
Benbourhim (cf. [1]).

In the next section, we present the minimization problem leading to the
vector spline. The solution of this problem depends on two positive
parameters, ex and p. The particular case of uncoupled (u, v) is obtained for
ex = p, for which the problem splits into a couple of thin-plate spline
problems, one for each of the components.

In the third section, existence and uniqueness of the solution is estab­
lished.
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The fourth section gives the analytical expression of the vector spline.
The fifth section discusses the so-called limit problems, obtained for

lI.//3 ~ 0 (or (0). A natural decomposition of the Hilbert space :r follows.
Some numerical examples are presented in the sixth section.
In the last section, we briefly discuss the problem of optimal values of the

parameters lI. and /3; the statistical approach leading to the same vector
leading to the same vector interpolation is outlined in terms of vector
Kriging.

2. THE MINIMIZATION PROBLEM

Let D-2L 2([R2) = {UE£tl'([R2)/DYUEL2([R2), Iyl =2}, the Beppo-Levi
space of order 2; £tl'([R2) is the space of distributions in [R2 and £tl([R2)

(or £tl) the test function space.
In the Hilbert space D -2L 2, we consider the scalar product

(UIU')=L;~IU(X;)u'(XJ+((ulu')), where ((ulu')) is the semi-scalar
product defined by ((ulu'))=L'YI~du;l2DYuDYu'dxdy, u,u'ED- 2L 2, and
X i = (Xi' yJ, i= 1, 2, 3, are three non-aligned points. We denote by &'1 the
set of polynomials defined on [R2 of total degree less than or equal to 1.

A fundamental result on Beppo-Levi space is given by

PROPOSITION 2.1. £tl +.c3Il is dense in D - 2L 2.

Proof Consider U E D - 2L 2 orthogonal to the space £tl + &'1; we have

3

(u Iu') = L u(XJu'(X;) + L f DYuDYu' dx dy = 0, (2.1)
i~j 1'11~2 R2

Vu'E£tl+&'j. If we take u;E.c3Il verifying u;(XJ=b y, i,j=1,2,3 (by is
the Kronecker symbol), Eq. (2.1) shows that u(Xi ) = O. Consider then u' =
cp E £tl; Eq. (2.1) gives LIYI ~d 1R2 DYuDYcp dx dy = 0 and J1R2L12U cp dx dy = 0,
by distribution derivatives definition. Since cp is any element of £tl, this
implies that j2u = 0. The tempered distribution u is then polyharmonic and
we conclude that u is a polynomial (cf. Schwartz [16]). Observing that the
polynomials of D - 2L 2 are elements of &'1 and using the equalities u(XJ = 0,
i = 1, 2, 3, we obtain u = 0. This completes the proof.

We deduce

PROPOSITION 2.2.

Va, b, C, dE {x,
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Proof By a double integration by parts, the equality is true for u and
v E f?}). Proposition 2.1 implies the result.

Let .of = D -2L 2([R2) X D -2L 2([R2), V = (u, v) E.or and rx, fJ two positive
constants.

We define the functional Jrx.p:.or-+ [R,

Jrx,p( V) = rx f IIV div VI1 2dx dy + fJ f IIV rot VI1 2dx dy,
~2 ~2

where

IIVdiv VI12=(oxdiv V)2+(oydiv V)2,

IIV rot VI1 2= (ox rot V)2 + (Oy rot V)2.

We adopt the notations D( V, V') for the semi-scalar product
J~2 (V div V· V div V') dx dy and R( V, V') for J1;l2 (V rot V· V rot V') dx dy;
the quadratic form D( V, V) will be denoted D( V) and R( V, V), R( V); (.)
is the usual euclidean scalar product in [R2 and II II the associated norm.

PROPOSITION 2.3. For each V = (u, v) and V' = (u', Vi) E.or,

D(V, V')+R(V, V')=((ulu'))+((vlv ' )).

Proof From Proposition 2.2, the terms J1;l2 oxxu OXyv' dx dy,
SI;l20XyVOxxu'dxdy, SI;l20XyUOyyV'dxdy, and Sl;l20yyVOxyU'dxdy of
D( V, V') cancel each other out with corresponding terms of R( V, V').

Proposition 2.3 implies that

Jrx,rx(V) = rx[D( V) + R( V)] = rx[((u Iu)) + ((v Iv))].

Let Xi = (Xi' y;), i = 1, ..., N, a set 6f N distinct points in [R2 containing
three non-aligned points, and Vi = (u i, v;), N given couples in [R2.

We define the minimization problem Prx,p:

P {Min Jrx,p( V)
rx,p V E.of and V(X;) = Vi'

Remark 1. In fact, the solution of Prx,P only depends on the ratio
p=rx/fJ·

Remark 2. If rx = fJ, Proposition 2.3 shows that Prx,rx splits into two
separate problems, one for each of the components:

P {Min((U Iu))
u uED- 2L 2 and u(XJ= U i
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p {Min((VIV))
v v E D - 2L 2 and V(X;) = Vi'

which solutions are thin-plate splines. If rx -# 13, a coupling between u and v
is introduced.

Remark 3. The choice of J~.f3 follows naturally from Proposition 2.3.
The weights rx, 13 (rx -# 13) are intended to control the relative magnitude of
D( V) and R( V).

Remark 4. The formal decomposition of the vector field V into rota­
tional and divergent parts from a velocity potential X and a stream function
t/J (which is known, in fluid mechanics, as the Cauchy-Helmholtz
Theorem) asserts

(in vector notation, V = Vx + Rot t/J, Vx = (oxX, OyX), Rot t/J =
(-Oyljl, oxt/J)). Note that X and t/J are solutions of the Poisson equations
AX = div V and At/J = rot V. It is possible to define a minimization problem
for (X, t/J),

{

Min !XI IIVAxl1 2 dx dy + 13 I IIVAt/J 11 2 dx dy
~2 ~2

X, t/JED- 3L 2 and VX(X;)+Rot t/J(XJ= Vi'

X(O) = 0, t/J(O) = 0,

from which u, V are deduced by differentiation.

The order of the Beppo-Levi space (D - 3L 2
) is raised to 3 in order

to define continuous functionals in the equalities constraints. The
coupling between u and v is now introduced by the measurement
constraints VX(XJ + Rot t/J(XJ = Vi' The indeterminacy of constants on X
and t/J is fixed by arbitrary values (X(O) = 0 and t/J(O) = 0).

However, the couples (X, t/J) E D - 3L 2
X D - 3L 2 that are solutions of this

minimization problem are not unique: the condition (X, t/J) E 9P2 X &2'

VX(XJ + Rot t/J(XJ = 0, i = 1, ..., N, and X(O) = 0, t/J(O) = 0~ X= 0 and
ljI = 0 (~ is the set of polynomials defined on ~2 of degree 2) is not
satisfied (cf. general spline theorem condition, cf. Laurent [12]). If AX is
replaced by div V and At/J by rot V in the functional above, and if the
constraints are expressed on V (V(XJ = VJ), we get the problem P~.f3'
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3. EXISTENCE AND UNIQUENESS OF THE SOLUTION OF P a,/3

Consider the spaces q; (defined above), i[Ij = (LZ(~Z))4, :!l' = ~ZN, and the
linear applications T: q; -4 i[Ij and A: q; -4:!l' defined by

T( V) = (a x div V, ay div V, ax rot V, ay rot V),

A(V) = (u(Xd, ..., u(XN ), v(Xd, ..., v(XN )).

fiE is equipped with the scalar product

<Vii Vz)=(uiluz)+(vilv z),

and i[Ij with the scalar product

(Xf (eiez+fifz)dxdy+fJf (gigz+hihz)dxdy,
~2 ~2

where (ei,fi,gl,hi)Ei[Ij, (ez,fz,gz,hz)Ei[Ij, and iX, fJ are fixed positive
constants. :!l' is equipped with the usual euclidean scalar product.

We can now state the main proposition.

PROPOSITION 3.1. The linear applications T and A verify:

(a) T and A are continuous,

(b) Ker T = .c~x .?l1 ,
(c) Ker Tn Ker A = {O},

(d) A is surjective,

(e) 1m T is closed.

Proof (a) From the definitions of the norms in the spaces fiE and i[Ij
and Proposition 2.3, T is clearly continuous. Continuity of A follows from
the continuous embedding D -zL z G '€O (Sobolev-type lemma; cf. Necas
[14]).

(b) Proposition 2.3 shows that

and a~xv=o, a~yv=o, a~yv=o, which gives the result.

(c) Results from the hypothesis on the points Xi and (b).

(d) Let the classical function f R( II XII) e!0 be defined by

if IIXII <R}
otherwise

(R>O).
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Since the points Xi' i = 1, ..., N, are distinct, we can take R i, i = 1, ...,
such that the open balls B(Xi , RJ are disjoint. The functions
fi(X) = fRi(IIX - Xiii) verify ft(Xj ) = bij, i, j = 1, ..., N. We define

N

u(X) = I uJJx)
i= 1

and
N

v(X) = I VJi(X),
i=l

The function V(X) = (u(X), v(X)) is an element of fl[ and satisfies the inter­
polation conditions V(XJ = Vi'

(e) Let (e,f,g,h)EO}j and (Vn) be a sequence in fl[ such that
Lim T(Vn ) = (e, f, g, h). T(Vn ) is a Cauchy sequence in O}j. Proposition 2.3
shows that (a~xun), (a~yUn), (a~yUn)' (a~xvn), (o~yVn), (a~yVn) are also
Cauchy sequences in L 2 and therefore converge.

Let l,m,n and l',m',n'EL2 such that

Lim(o~yun)= m,

Lim(o~yvn) = m',
(3.1 )

Since the compatibility conditions (o~yl= o;xm, ... ) are satisfied, we may
conclude (cf. Schwartz [16, p. 59], and Benbourhim [2]) that there exist
u and v E D- 2L 2 such that

::12 _UyyU -n
::12 ,UyyV = n.

(3.2)

But Lim(o~xun+ O~yVn) = e => o;xu + O;yV = e, Lim(o~yun + a~yVn) =
f => OyU + O~yV = f, Lim(o~xvn - O~yUn) = g => o~xv - O;yU = g, and
Lim(oxyvn-Oyyun)=h=>o~yv-o~yu=h. This shows that (e,f,g,h)
Elm T.

Proposition 3.1 implies the theorem:

THEOREM 3.2. (a) The problem P,,-,fJ (with fixed a, /3>0) admits a
unique solution Va•fJ in Pl.

(b) Va•fJ E fl[ such that V",fJ(XJ = Vi is the solution of Px,fJ if and only
if there exist ai' hi E IR, i = 1, ..., N, such that

aD( Vx, fJ' V') + /3R(Va,p, V')
N N

= I aiu'(XJ + I biv'(XJ,
i~l i~l

The coefficients ai' bi, i = 1, ..., N, are unique.

'\IV' = (u', v') Efl[. (3.3 )

Proof (a) and (b) result from Proposition 3.1 and general spline
theorems (cr. Laurent [12]).
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4. EXPRESSION OF THE SOLUTION V~.f3

PROPOSITION 4.1. For V E!!l', the following properties are equivalent:

(1) V verifies the equality

N N

aD(V, V') + f3R(V, V') = L a;u'(X;) + L b;v'(Xi )

i= 1 ;~ 1

(2) V verifies the system

{

N

LI(aax div V - f3ay rot V) = L aJ) Xi

A(,B,div V+pB,rot V)~I h,D x,

VV' E!!l'. (4.1 )

(4.2)

in the distribution space (b x; is the Dirac distribution at point X;) and the
coefficients a;, b;, i = 1, ... , N, satisfy the orthogonality conditions

N N

L a;p(X;) = I b;p(X;)=O,
;=1 ;~1

(4.3)

Proof By taking V' = (cp, 0) and VI = (0, cp), Vcp E f!} in Eq. (4.1), and
using the definition of distribution derivatives, we deduce the system (4.2).
With VI = (p, 0) and VI = (0, p), Vp E Yl, we deduce (4.3). Conversely,
Eqs. (4.2) and (4.3) => Eq. (4.1) for each VI E f!} X f!} and VI E &1'1 X &1'1' Using
Proposition 2.1 (density of f!} +Yl) and the continuous dependence on V'
in the equality (4.1), we deduce the result.

Note that, for a = 13, we get the system

issued from a couple of Duchon's spline problems.

PROPOSITION 4.2. The solution VHE !!l' of the homogeneous system
associated to Eqs. (4.2) are the polynomials &1'1 x Yl.

Proof A solution V H of the homogeneous system associated to (4.2)
verifies aD(VH , VI) + f3R(VH , V')=O, VVIEf!}xf!}. Since this equality is
also verified with V' E Yl X &1'1' we deduce, by density (Proposition 2.1), that
it is true for each V' E!!l'. By taking V' = VH' we deduce the result.
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Consider K(X) = e II XI1 4 log II XII with X E IR 2 and e a real constant
(8= -1/27n); Kis a fundamental solution of the operator Le, i.e., L1 3K=3
(b is the Dirac distribution at the origin).

Let /1 be a compact support measure orthogonal to ,0I!j, i.e.,

f p d/1 = 0,
u;\2

LEMMA 4.3. For any compact support measure /1 orthogonal to ~,

DY(/1 * K) E D -2L 2, for each Iyl = 2.

Proof We want to show that DY(/1 * K) E L 2, for each Iyl = 4, or
equivalently, show that the Fourier transform of this function is an

~

element of L 2
. Following Schwartz (cf. [16J), we get DY(/1 * K) =

(Y j1( ()( T 1 Fp( 1/11 (11 6
) + T2L12b), where (= (( 1, (2) is the Fourier space

variable, '1 and,2 are two real constants, and Fp is the finite part of the
distribution. It is easy to see that (1' j1(0 L1 2b = 0 for IyI> 3 (cf. Duchon
[8J). Now, in the unit ball B(O, 1), the inequality 1j1(OI ~1(1 WI 2

(/(1 is a
positive constant) is verified because /1 is orthogonal to ,0I!j; we get the
estimate 1(1'Jl(()I/WI 6 ~ /(dl(11 4 -,y, and hence, the integral converges for
Iyl > 3. In the complement of B(O, 1), the equality 1,11(01 ~ K2 (K2 is a
positive constant) is verified because the Fourier transform of a bounded
measure is a bounded function; we get the estimate I(Yj1(OI/WI 6 ~

/(21 II (11 6- IYI, and the integral converges for IyI < 5. This completes the proof.

It is now possible to state

THEOREM 4.4. The solution v'x,p = (u~,p, v~,p) of the problem P ~.p admits
a unique expression of the form

ai' bi E IR, i = 1, ... , N, are given by the equality (3.3), and p(X), q(X) E &\,
p(X)=c 1 +C 2 X+C 3 y, q(X)=dt +d2 x+d3 y·

640/67/1-5
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The coeificients are obtained by soloing the (2N + 6) x (2N+ 6) linear
system

CKD +~ KR)(~) +P (~) =(:)

pi (~) = 0,

with the 2]'{ x 2N matrices

and

and the 2Nx 6 matrix

(:
Xl

~,) 0

p= XN YN

(; Xl

;J0

X N

a 1 Cl

Cz

(~) stands for
aN

(~) jar
C3

and
hI d 1

d2

bN d3

Ul

(~) for

P' is the transpose of P.
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Proof V~,p verifies the system (4.2) with ai' hi, i= 1, ... , N, given by
./"...

Theorem 3.2. By taking the Fourier transform Va,P of Va.p (8t is contained
in the space of tempered distributions), we get the system

The solution of the system is
1 N

C(~)=(2' )4 L exp(-2jn(Xi'~))
'In i~ 1

The inverse Fourier transform of (u;p, r(;), after the polynomial part is
removed (cf. Schwartz [16]), gives VK=(UK,V K) of the form

It is easy to check that this function satisfies Eqs. (4.2). Since Eq. (4.3) is
verified by the coefficients ai' hi, i = 1, ..., N, Lemma 4.3, implies that
VK E8t.

Suppose now that Va,p- VK verifies the homogeneous system associated
with Eqs.(4.2). From Proposition 4.2, we see that Va,p- VKE,o/{ xtJ'9j and
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we deduce for V",p the expression of Theorem 4.4. The uniqueness of the
expression of V",p follows from Theorem 3.2.

The linear system verified by (a, b, c, d) is obtained by taking the
successive equalities

u",p(X;)=ui

v",p(X;) =Vi

from interpolation constraints (2N first lines of the system) and

N N N

Lai=O, L aixi=O, L aiYi=O,
i= 1 i= 1 i~1

N N N

L bi=O, L bixi=O, L biYi=O,
i=1 i~1 i~ 1

obtained from Eq. (4.3) (six last lines of the system).
The existence and uniqueness of the expression of V",p shows that the

system is invertible. This completes the proof.

Using the notations of Theorem 4.4, we state

PROPOSITION 4.5. The solution V",p of the problem P",13 verifies the
equalities

(b) D(V",P)=:2G)'KD G}

(c) R(V",p)= ;2 (~)' K R G}
where (~) is the solution of the linear system given by Theorem 4.4 (or equiv­
alently, given by Eq. (3.3)).

Proof (a) By taking V' = V",p in Eq. (3.3) and using the expression of
V",p given by Theorem 4.4, the result follows.

(b) Let VD = (u D , VD) defined by
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By taking V' = V0 in Eq. (3.3) and observing that D( V",/h V0) =

D(V",p, V",p) D(V",p) and that R(V",p, Vo ) 0, we get the result.

(c) The proof is the same, using VR = (UR' VR) defined by

1 ( N IV
UR(X)=fj i~l aio~yK(X-Xi) i~l biO;yK(X-

vR(X) = ~ ( - i~l aio;yK(X - Xi) + i~l bio;xK(X - Xi».

From equalities (b) and (c), it becomes possible to calculate effectively
the quantities D( V",p) and R(V",p); thus, by modifying the ratio p =
and using the monotonicity properties of D(Vp ) and R(Vp ) (cf. remarks of
Proposition 5.3.1, Section 5.3), we get a control on the ratio D(Vp)/R(

PROPOSITION 4.6. The matrices ((lja)Ko + (ljp)KR ), Ko , and K R are
positive definite on the subspace {(WPt(~)=O}.

Proof Let any (~) such that pt(~)= 0 (ai' bi' i = 1, ..., N, verify Eq.4.3).
Consider V0 + R E f£ of the form

V0 + R satisfies Eqs. (4.2) and consequently by taking V' = VD + R in
Eq. (4.1), we get

1(a)'. (0) 1 (a)1 (a\IXD(VO+R)+fJR(VrHR)=~ b KOb +p b KR b)-

This shows that the matrix (l/a)KD + (l/fJ)KR is positive. Suppose now
that

1 (a)1 (a) 1 (a)1 (a)
~ b Ko b +p b K R \b =0.

From the above equality, we deduce that V0 + R = (p, q), p, q E fJJJr. Again,
Eq. (4.2) implies that L~l aiDxi=O and L~~l b/YXi=O. By using/;(X)E!21
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defined as in Proposition 3.1(d), we deduce that a i = bi = 0, i = 1, ..., N. The
matrix (l/a)KD+ (1/P)KR is therefore positive definite in the subspace
{(~)/pt(~)=O}.

To show the same for the matrix K D , we consider VDE X defined as
in Proposition 4.5(b) (VD + R= VD + VR)' By using again Eq. (4.1) (true
for VD+ R) with V'= VD and observing that D(VD+ R, VD)=
D(VD, VD)=D(VD) and R(VD+ R, VD)=O, we get D(VD)=(I/a2

)

(~yKDm and therefore KD is positive. Suppose now that (~yKDm = 0.
This implies that D( VD) =° and from R( VD) = 0, we conclude that
VD = (p, q), p, q E ~. With the use of the property of K(X), we obtain
the equality Ll 2 div( VD) = L;V~ 1 ai<5~.X; + L;V~ 1 bi<5~,x; = 0, where <5~,x, is
the derivative of the Dirac distribution along x at point Xi and <5~,x; the
derivative along y.

To show that a i = bi = 0, i = 1, ..., N, we construct a family of functions

fi(X) E f?) such that V/; (Xi) = (ai' bJ and Vfi(X) = 0, j # i: let fR( IIXII) be

defined as in Proposition3.1(d) and Xi=Xi+ti(ai,bJ, tiEIR. R i and Xi'

i = 1, ..., N, are taken such that the open balls B(Xi , R i ) are disjoint and

XiE B(Xi, RJ, with Xi # Xi' It is easy to verify thatfR,(IIX - Xiii) satisfy the

equality VfR,(IIXi - Xiii) = ki(ai, bJ (ki constant # 0); the functionsfi(X) =

(1/kJfR,( IIX - Xiii) satisfy the above property.
For the matrix K R , the proof is similar.

5. LIMIT PROBLEMS (p --+°and p --+ + 00)

Following the Remark 1 in Section 2, we consider Jp ( V) = pD( V) + R( V)
instead of J<y.,[J' We want to show that the solution Vp of the problem P p

admits two limits as p --+°and p --+ + 00.
Consider the problems

{
Min D(V)

Pa VEX, R(V)=O and V(XJ= Vi

and

{
Min R(V)

P+ oo
VEX, D(V)=O and V(X,.) = Vi'

We show that Pa and P +00 admit unique solutions denoted by Va and
V +00' respectively, and Limp_a Vp = Va, Limp_ +00 Vp = V +00'
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5.1. Existence and Uniqueness of the Solution of Po (and P +(0)

We define the subspace Xo = {V EXjR( V) = O} of X. From Proposi­
tion 2.3, we see that the semi-scalar product D( V, V') is continuous for the
norm II 11:1£ (II 11:1£ is the norm of X associated with <I »); the quadratic

form D( V) is then continuous and Xo is a closed subset of X. Therefore,
Xo is a Hilbert space for the scalar product <I ).

We define the spaces qy = (LZ(IRZ))Z, ~ = 1R2N
, and the linear applica-

tions T: ito -+ qy and A: Xo -+ ~ by T( V) = (0x div V, (\ div V) and
A(V) = (u(Xd, ..., u(XN ), v(Xd, ... , v(XN )). qy is equipped with the scalar
product S~delez+fdz)dxdy, (e1,fdEqy, (ez,fz)E'!Y; ~ is equipped
with the usual euclidean scalar product.

We state the theorem relative to problem Po.

THEOREM 5.1.1. (a) The problem Po admits a unique solution Vo in Xn ·

(b) VoE Xo such that Vo(XJ = Vi is the solution of Po if and only if
there exist ai' b j E IR, i = 1, ..., N, such that

N N

D(Vo, V') = L aju'(X;) + L bjv'(X;),

\IV' = (u', v') E .oro. The coefficients aj, bj, i = 1, ..., N, are unique.

(5.1 )

Proof The points (a), (b), and (c) of Proposition 3.1 are easily verified.
The main differences come from point (d) and (e).

(d) A is surjective: As for Proposition 4.6, we construct a family of
functions f1'X)Ef?) such that Vfj(Xj=(u j, vJ and vi(X;) =0, j=fi. The

function V(X) = L~~ 1Vfj(X) is an element of .or and satisfies R( V) = 0 and

V(X;) = Vj, i= 1, ..., N.

(e) 1m T is closed: Consider a sequence (Vn ) in Xn such that
Lim T( Vn) = (e, f), (e,f) E qy. From Proposition 2.3, we observe that

[((ulu))+((vlv))]= IIT(V)II; for each VEXo . Thus o~xun, O~yUn, O~yUIl

and o~xvn, O~yVn, O~yVn are Cauchy sequences in L Z and therefore converge.
We deduce the existence of 1, m, n, 1', m' n' E LZ and u, v E.or verifying
Eqs. (3.1) and (3.2). But R(Vn)=O, \In, implies that o;xVn-O;yUn-+O and

Z z· ~0xyVn-OyyUn-+O. ThIS shows that (u, V)EEl'D and (e,f) Elm T.

From these properties and general spline theorems, we deduce the result.

For the problem P +00' we get a symmetric result; let us define

EtR = {VEEtjD(V)=O}.
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THEOREM 5.1.2. (a) The problem P+ oo admits a unique solution V +00

in :!(R'

(b) V + 00 E :!(R such that V + 00 (Xi) = Vi is the solution of P + 00 if and
only if there exist ai' biE IR, i = 1, ..., N, such that

N N

R(V+ oo , V')= L aiu'(Xi)+ L biv'(X;)
i=1 i=1

"IV' = (u', v') E JIl'R' The coefficients ai' bi, i= 1, ..., N, are unique.

(5.2)

5.2. Expression of the Solutions Vo and V + 00

THEOREM 5.2.1. The solution Vo= (uo, vo) of the problem Po admits a
unique expression of the form

N N

uo(X) = L aJ);xK(X - X;) + L bi8;yK(X - XJ +p(X)
i= 1 1

N N

vo(X) = L a;iJ;yK(X - Xi) + L bia;yK(X - Xi) +q(X),
i~1 i=1

with ai,biEIR, i=l, ...,N, given by Eq.(5.1) and p(X), q(X)EYi,
p(X) CI +C1 X+C3 Y, q(X)=dl +d1 x+d3 y·

The coefficients are obtained by solving the (2N + 6) x (2N + 6) linear
system

KOG)+P(~)=(:)

pi (:) =0.

Proof By taking V' = Vcp, cp E!?iJ in the equality (5.1) and observing
that R( V') = 0, we get

N N

.<1 2 div Vo = L aJj~,xi + L bJ)~,xi'
i=1 i=1

(5.3)

From the property of K(X), it is easy to verify that Vo = (uo, vo), defined
by

N N

uo(X) = L ai8;x K(X - X;) + L bi8;yK(X - X;)
i=1 i=l

N N

vo(X) = L a;8;yK(X - X;) + L bia;yK(X - X;),
i~1 i~1
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satisfies (5.3). Thus Vo V 0 satisfies the homogeneous system
,12div(Vo Vo)=O associated to (5.3). Using the same arguments as for
Proposition 2.1, we deduce that div( Vo- VD) is a constant. This implies
that D(Vo Vo)=O, and since R(Vo- Vo)=O, we get Vo= Vo+(p,
p, q E ~. The uniqueness of this expression is guaranteed
Theorem 5.1.1 (b). The linear system is deduced in the same way as for
Theorem 4.4.

For P + 00' the theorem gives a solution V + co = (u + co' V -I co) of the form
N N

u+oo(X)= I a,8;yK(X-XJ- I b,o;'yK(X-X,)+p(X)
i=1 i=l

N N

v+co(X)= - I a,8;'yK(X-XJ+ I b,o;'xK(X-X,)+q(X),
i=l i=l

with the associated linear system

KR(:)+P(~)=C)

pI (:) 0.

5.3. Limit of Vp

In the scalar product <I ) of X, we consider that the three non-aligned
points Xl' X 2 , X 3 (cf. Section 2) are elements of the set of interpolation
points; it follows that Vp(X,) = Vi' i = 1, 2, 3, VP E [0, + 00].

We state some immediate properties of the functions p _ D( V p) and
p-R(Vp ):

PROPOSITION 5.3.1. The solutions Vp of the problems Pp verify

(a) Lim D(Vp)=O.
p-++oo

(b) Lim R(Vp)=O.
p~o

(c) D(Vp)~D(Vo),

(d) R(Vp)~R(V+(",),

VpE [0, +00]'

VP E [0, + 00 ].

3

(e) IlVpll;'= I IlVp(X,)11 2 +D(Vp)+R(Vp)
i=l

3

~ I IlViI1 2 + D(Vo)+R(V+ co )'
'=1

VpE [0, +00]'
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Proof The optimality of Vp implies that Jp(Vp)~pD(Va) and
Jp(Vp)~R(V+oo)'The results follow.

For the same reasons, we note that for p, p' E ]0, + 00 [, the inequal­
ities Jp(Vp) ~ Jp(Vp') and Jp'(Vp') ~ Jp'(Vp) give (p - p')D(Vp) ~
(p-p')D(Vp') and (1jp-ljp')R(Vp)~(1jp-1jp')R(Vp')'Thus p~p'=
D( Vp) ~ D( Vp') and R( Vp) ~ R( Vp'); i.e., D( Vp) is a decreasing function of
p and R( V p) an increasing function.

THEOREM 5.3.2. Limp ~ a Vp= Va and Limp ~ + 00 Vp= V + 00 in the
space X.

Proof The proof is given for p --+ O.
Let (Pn) be any sequence such that Limn ~ + 00 Pn = O. From Proposi­

tion 5.3.1(e), II Vpnllx is bounded. Thus, there is a subsequence of (Pn),

denoted (Pk), such that VPk --+ Va weakly. The weak convergence implies

that the continuous linear forms u(XJ and v(XJ verify U; = upk(X;) --+ ~(XJ

and v;=vPk(XJ--+D;(XJ Therefore Va(XJ=V;, i=1, ...,N. But, from
Proposition 5.3.1 (b) and (c) and continuity of D( V) and R( V), we deduce

~ -
that 0 ~ R( Va) ~ Lim inf R( Vpk ) = 0 and D( Va) ~ Lim inf D( VpJ ~D( Va).

By uniqueness of the solution of Pa, this implies that Va = Va. Using again
Proposition5.3.1(b) and (c), we get Lim sup IIVPklli<~::i~111V;112+

D( Va) = II Vall i· This inequality and the weak convergence VPk --+ Va
implies that VPk --+ Va for the norm II II.%" of f'l (cf. Brezis [3]). By the same
way, we can show that every convergent subsequence of (VpJ converges
necessarily to Va; consequently Limp~a Vp= Va.

For P --+ + 00, the proof is similar.

5.4. Decomposition of the Space f'l

The limit problems Pa and P +00 have introduced the closed subspaces

of X, f'lo = {VEXjR(V) = O} and XR = {VEXjD(V) = O}. Proposi­

tion 2.3 shows that Xo 1. f'lR and Xo n f'lR = {O} in the subspace
f'lx={VEXjV(XJ=O, i=1,2,3}. We define the subspaces Xo =
{VEXjV(XJ=O, i=1,2,3 and R(V)=O} and f'lR={VEXjV(XJ=O,
i= 1, 2,3 and D(V) =O}.

FIG. 1. Wind fields for tX = 0 (a), tX = 0.1 (b), tX = 0.9 (c), and IX = I (d). The winds are
shown by arrows; the scale magnitude is indicated in the lower right-hand comer: the arrow
represent a maginitude of 10 m S-l.
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PROPOSITION 5.4.1. The Hilbert space a: is the direct orthogonal sum of
(.0"lY, .ot~, and ''!{R'

Proof It is easy to see that Yf is the direct orthogonal sum of (~)2 and
Yl:r (cf. Benbourhim [2]) and that ,?'l'o.l YfR , YfonYfR {O} (Proposi­
tion2.3). We show now that Yfx=.?'l'oEBYfR, i.e., Yf~=Jt'R in the space
Yfx . Let VE Yfx such that <VI V') =0, \IV' E Yfo . We choose V' e Jt'o of
the form Vcp+(p,q), cpe!ii andp,qe~ such thatp(Xi ) -oxcp(X,.} and
q(XJ = - (3ycp(X;), i = 1, 2, 3, so that V' (X,.) = 0 and V' E ,?'l'x. We derive
the equality f1R2 (V div V· V div V') dx dy = Jr~2 (V div V VAcp) dx dy =
JlI<dL12div V)cpdxdy=O, which shows that A2 div V=O since cp is any
element of !ii. With the same arguments as in Proposition 2.1, we deduce
that div V is a constant and therefore D( V) = O. This concludes the proof.

This space decomposition shows that J~,f3(V) a IIPD(V)lli+
PliPR(V)lli, where Po: Yf-..Yfo and PR:Jt'-..YfR are the projection
operators. Hence, the functional is the norm of a weighted sum of the YfD
and ,?'l'R components of V.

6. NUMERICAL EXAMPLE

We have programmed and tested the method by interpolating real wind
data obtained from an operational meteorological observing system. This
example is intended to show the variations of the vector field and of the
derived divergence and rotational fields along with the parameters a,p (in
this case, we consider a +13 = 1). See Figs. 1-3.

The data are lO-m wind measurements (horizontal wind) at 24 station
locations, observed the 5th of March 1990,00 GMT. The considered region
is from 43°N-46°N, 2°E-6°E (southeast France). The cartesian coor­
dinates of the station locations are obtained through a stereographic
projection; the tangent plane on which the interpolation is done intersects
the sphere at 44°30'N, 4°E in the center of the domain. Station locations
are noted by a cross (+) and latitude-longitude circles by dashed lines
(1 0 apart). The solid line near the bottom side of the pictures represent
coastal line. In the upper right-hand corner is indicated the value of the
parameter a.

For a =0 (Po problem), the variations of the divergence field are
maximum, while the rotational field is constant (~1.3 10'-5 S 1). The
converse happens for a = 1 (13 = 0, P + 00 problem): the divergence field is
constant (~1.71O-5S-1) and the variations of the divergence fieIdare
maximum. However, this example, as a result of the use of ground data,
does not present a marked tendency for rotational or divergent behaviour.
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FIG. 2. Divergence field derived from the wind field for IX = 0.1 (2a) corresponding to
Fig. 1(b), IX = 0.5 (b); IX = f3 = 0.5; uncoupled wind components); and IX = 0.9 (c), corresponding
to Fig. l(c). Contours are spaced at 5 x 1O-5s -1 and are labeled in units of 1O-5s -1 in (a) and
1O-6s -1 in (b) and (c). Negative contours are indicated by dashed lines.

7. CONCLUDING COMMENTS

7.1. Optimal Values of the Parameters (l and P
For a fixed set of data values, an "optimal" value of the parameter p

(p = (lIP) has to be selected. In the event that an a priori estimate of the
ratio D( V)/R( V) (cf. Introduction, Section 1) is available, we obtain the
solution by solving iteratively the equation D(Vp)IR( Vp) = p' (p' > 0 fixed):
since D( Vp)1R( Vp) is a continuous decreasing function of p and
Limp~o(D(Vp)/R(Vp» = + 00, Limp~ +oo(D(Vp)/R(Vp» = 0, we get a
unique solution for each fixed value p' > O.

However, in the general case, a more intrinsic approach for the deter­
mination of this parameter is desirable. Without going deeper into the
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a VECT0R SPLINE ~ R0TRTI0NRL FIELD 10

I " I

I "" I

Jt\ \ +:
\ I L I ) I

J I

FIG. 3. Rotational field derived from the wind field for the same values of IX as in Fig. 2.:
IX=O.1 (a), 1X=0.5 (b), and 1X=0.9 (c). Contours are labeled in units of 1O-6s- 1 in (a) and
(b), and 10 - 5S - 1 in (c). Other details as in Fig. 2.

discussion of this problem, we can briefly show how the parameters rx and
f3 can be interpreted in a statistical sense. This is the purpose of the next
sub-section. Another approach is given by Generalized Cross Validation
(GCV) (cf. Wahba and Wendelberger [18] and Utreras [17]), originally
introduced for the estimate of smoothing parameters. Some numerical
experiments, carried out from analytic data, tend to show its ability to
determine the parameter p.

7.2. Relation to the Statistical Interpolation Procedure
(Minimum Variance Linear Estimate)

We first recall the theory for a scalar field <"P(X), X E [R2.

We suppose that <"P(X) is a stochastic process with zero mean value
(E[<"P(X)] = 0, \IX E [R2) and with covariance function c(X, Y) =
E[<"P(X) <"P( Y)], X, Y E [R2; <"P is then called a stationary process.
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For a fixed X E 1R 2, we consider the minimum variance linear estimate
<pe(X) of <p(X), from given values <p(X;), i=1, ...,N (the data).
<Pe(X) = "I.f"~ 1 Ai<P(X;), and Ai E IR are obtained from the minimization
problem

Ai are given by

where C is the Nx N covariance matrix, C = (c(Xi, Xj )).

For a vector field V(X) = (u(X), v(X)), the minimum variance linear
estimate Ve(X) of V(X) from gIven values V(X;) = (u(X;), v(X;)),
i= 1, ..., N, is

N N

ue(X) = L: AiU(X;) + L: ,uiV(X;) and
i~l i~l

N N

ve(X) = L: A; u(X;) + L: ,u; v(Xi),
i~l i~ 1

with A,,u such that MinJe,1' E[(u(X) - "I.f"= 1 AiU(X;) - "I.f"~ 1 ,ui v(X;) )2] and
A', ,u' such that MinJe "I" E[(v(X) - "I.f"~ 1 A; u(X;) - "I.f"= 1 ,u; V(X;))2]. A and ,u
are given by

cuu(X, X N )

cuv(X, Xl)

and A', ,u' are given by

cvu(X, X N )

cvv(X, Xd
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(7.1 )

where Cuu = (cuu(Xi> X)), CUV = (cuv(X;, Xj )), Cvu = C~v, and Cvv =
(cv)X;, Xj )) are N x N covariance matrices (cuu(X, Y) E[u(X) u(
cuv(X, Y) E[u(X)v(Y)], cvu(X, Y)=E[v(X)u(Y)], and cvv(X, Y)=
E[v(X)v( Y)]).

In order to control the divergent and rotational part of the vector field,
these covariances are generally deduced from the covariances of X and ljJ
(we recan the equality V = Vx + Rot l/!; cf. Section 2, Remark 4).

If now x, l/! are zero-mean stationary stochastic processes, independent
(E[X(X)l/!( Y)J = 0, "IX, Y E 1R2

), and with covariance functions defined by

E[X(X) x( Y)] = Axc(X - Y)

E[l/!(X)l/J(Y)] =},>/tc(X - Y),

AX' AIjJ E IR, c(X) = c( - X), and if X, l/! are supposed sufficiently regular, we
can derive the following relations for (u, v):

E[u(X)u( Y)J = AxO;xC(X- Y) + }'!/rO;yc(X - Y)

E[v(X)v(Y)] A>/t0;xc(X- Y)+AxO;yC(X- Y) (7.2)

E[u(X)v( Y)] = E[u( Y)v(X)] = (}-x - }'IjJ)o;yc(X - Y).

Formally, we can identify the vector spline V""p with the minimum
variance linear estimate obtained with u and v defined by the covariances
(7.2) and with Ax = lllX, }'1jJ = liP, and c(X) = K(X). In fact, the identifica­
tion may be stated rigorously if the stochastic processes x, l/! are not con­
sidered stationary but, following the terminology of Kriging (d. Matheron
[13], Dubrule [6, 7]), supposed to have stationary increments of order 2
and variograms of the form (7.1). The deduced u, v processes have station­
ary increments of order 1 and variograms given by (7.2). The details of this
point will be developed in a future work.

7.3. EXTENSIONS

7.3.1. Smoothing Spline

In the same way as for all spline functions, we can introduce a smooth­
ing problem: For fixed }" IX, P> 0, we define

{

Min<u""p( V) + ;~1 IIV(X;) - V;11
2

VE ?t.

From the above theory, the unique solution of this problem is easily
deduced.
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7.3.2. Three Dimensional Vector Spline

A three dimensional vector interpolation using div and rot operators (rot
is now a vector operator) can be formulated in the same way. Denoting
V(X) = (u(X), v(X), w(X)), X = (x, y, z), div V = 8x u + 8yv + 8z w, and

(

(rot V)x) (8YW - 8zV)
rot V= (rot V)y = 8z u-8x w ,

(rot VL 8x v-8yu

the functional takes the form

+ Px f IIV(rot VU 2 dx dy dz
1I;!3

+ pz f IIV(rot VU 2 dx dy dz,
1I;!3

where V is the three dimensional nabla operator, II II the usual euclidean
norm of ~3, and ct, Px, Py, pz positive constants. For ct = Px =Py= Pz, we
get the same result as in Proposition 2.3, J""""""",(V)=ct[((ulu))+
((v Iv)) + ((wi w))], and in this case the interpolation is applied separately
to the three components (here (( I )) is the three dimensional version of
the semi-scalar product introduced in Section 2).
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